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THE CONVERGENCE BALL OF INEXACT
NEWTON-LIKE METHOD IN BANACH SPACE UNDER

WEAK LIPSHITZ CONDITION

Ioannis K. Argyros* and Santhosh George**

Abstract. We present a local convergence analysis for inexact
Newton-like method in a Banach space under weaker Lipschitz con-
dition. The convergence ball is enlarged and the estimates on the
error distances are more precise under the same computational cost
as in earlier studies such as [6, 7, 11, 18]. Some special cases are
considered and applications for solving nonlinear systems using the
Newton-arithmetic mean method are improved with the new con-
vergence technique.

1. Introduction

In this study we are concerned with the problem of approximating a
solution x∗ of the nonlinear equation

(1.1) F (x) = 0,

where F is a Fréchet differentiable operator defined on an open ball
U(x∗, r) with center x∗ and radius r > 0 of a Banach space X with val-
ues in a Banach space Y. Many problems in Applied Sciences and other
disciplines can be brought in a form like (1.1) using Mathematical Mod-
elling [9, 12, 16, 18, 19]. The solutions of these equations can be found
in closed form. That is why most solution methods for these equations
are iterative. In Applied Sciences, the practice of numerical analysis
is essentially connected to variants of Newton’s method [1]-[19]. The
study about convergence matter of Newton’s method is usually centered
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on two types: semi-local and local convergence analysis. The semi-local
convergence matter is, based on the information around an initial point,
to give criteria ensuring the convergence of Newton’s method, while the
local one is, based on the information around a solution, to find esti-
mates of the redii of the convergence balls. There is a plethora of studies
under different Lipschitz-type hypotheses on the operators involved (cf.
[1]-[19]) and the references there in). In the present paper we study the
local convergence of the Inexact Newton-Like Method(INLM) defined
by
For n = 0 step 1 until convergence do.
Find the step rn which satisfies

(1.2) Anrn = −F (xn).

Set
xn+1 = xn + rn,

where x0 is an initial point. If An = F ′(xn), (INLM) reduces to Newton’s
method and if An = F ′(x0), (INLM) reduces to the simplified Newton’s
method. Other choices for operator An are possible [2]-[5]. We suppose:
There exists x∗ ∈ X such that F ′(x∗) = 0 and F ′(x∗)−1 ∈ L(Y, X). The
radius Lipschitz condition with L average

(1.3) ‖F ′(x∗)−1(F ′(x)− F ′(xθ))‖ ≤
∫ ρ

θρ(x)
(x)L(u)du

for each x ∈ U(x∗, r), ρ(x) = ‖x− x∗‖, xθ = x∗ + θ(x− x∗), θ ∈ [0, 1] for
some nondecreasing function L holds and A(x) is invertible and

(1.4) ‖A(x)−1F ′(x)‖ ≤ a1, ‖A(x)−1F ′(x)− I‖ ≤ a2

for each x ∈ U(x∗, r).
It follows from (1.3) that there exists a nondecreasing function L0

such that center Lipschitz condition with L0 average
(1.5)

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤
∫ ρ(x)

0
L0(u)du, for each x ∈ U(x∗, r).

Clearly,

(1.6) L0(u) ≤ L(u), for each u ∈ [0, r]

holds in general and L
L0

can be arbitrarily large [2], [5].
Hypothesis (1.3) has been used extensively in the study of Newton’s

method and together with (1.4) in the study of inexact Newton methods.
In particular, convergence balls have been given under (1.3) in [7]. We
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show under the same hypotheses that the convergence balls can be en-
larged and the estimates on the distances ‖xn−x∗‖ for each n = 1, 2, · · ·
can be more precise. These advantages are obtained since, using (1.5)
and the Banach lemma on invertible operators [12], [13] we obtain the
estimate

(1.7) ‖F ′(x)−1F ′(x∗)‖ ≤ (1−
∫ ρ(x)

0
L0(u)du)−1 for each x ∈ U(x∗, r),

whereas in earlier studies such as [6], [7], [11], [17], (1.4) and the Banach
Lemma are used to obtain

(1.8) ‖F ′(x)−1F ′(x∗)‖ ≤ (1−
∫ ρ(x)

0
L(u)du)−1 for each x ∈ U(x∗, r).

Estimate (1.7) is more accurate than (1.8) if L0 < L and is obtained
using (1.5) which is cheaper than (1.4). The exchange of (1.8) with (1.7)
in the convegence analysis leads to the advantages already mentioned
above. From now on we shall denote by (C) conditions (1.3)-(1.5) and by
(C0) conditions (1.4) and (1.5). We shall also use the auxiliary Lemmas
taken from [6], [18].

Lemma 1.1. Let f(t) = 1
tδ

∫ t
0 L(u)uδ−1du, δ ≥ 1, 0 ≤ t ≤ r, where L

is a positive integrable nondecreasing function in [0, r]. Then, function
g is nondecreasing monotonically with respect to t.

Lemma 1.2. Let g(t) = 1
t2

∫ t
0 L(u)(δt−u)du, δ ≥ 1, 0 ≤ t ≤ r, where

L is a positive integrable and nondecreasing monotonically function in
[0, r]. Then, function g is nondecreasing monotonically with respect to
t.

2. Local convergence of (INLM)

In this section first we present the local convergence of (INLM) under
the (C) conditions.

Theorem 2.1. Suppose the (C) conditions and let r satisfy

(2.1)
a1

∫ r
0 L(u)udu

r(1− ∫ r
0 L0(u)du)

+ a2 ≤ 1.

Then (INLM) is convergent for all x0 ∈ U(x∗, r) and



4 Ioannis K. Argyros and Santhosh George

‖xn+1 − x∗‖ ≤ a1

∫ ρ(x0)
0 L(u)udu

ρ(x0)2(1−
∫ ρ(x0)
0 L0(u)du)

‖xn − x∗‖2

+a2‖xn − x∗‖, n = 0, 1, · · ·(2.2)

where

(2.3) q :=
a1

∫ ρ(x0)
0 L(u)udu

ρ(x0)(1−
∫ ρ(x0)
0 L0(u)du)

+ a2 < 1.

Proof. Choosing x0 ∈ U(x∗, r) where r satisfies (2.1), then q determined
by (2.3) is less than 1. in fact, from the monotonicity of L and Lemma
1.1, we have

q =
a1

∫ ρ(x0)
0 L(u)udu

ρ(x0)2(1−
∫ ρ(x0)
0 L0(u)du)

ρ(x0) + a2

<
a1

∫ r
0 L(u)udu

r2(1− ∫ r
0 L0(u)du)

r + a2 ≤ 1.

Then, if xn ∈ U(x∗, r), we have by (INLM)

xn+1 − x∗ = xn − x∗ −A−1
n (F (xn)− F (x∗))

= xn − x∗ −
∫ 1

0
A−1

n F ′(xθ)dθ(xn − x∗)

= A−1
n F ′(xn)

∫ 1

0
F ′(xn)−1F ′(x∗)(F ′(x∗)−1

×(F ′(xn)− F ′(xθ)))(xn − x∗)dθ

+A−1
n (An − F ′(xn))(xn − x∗),

where xθ = x∗ + θ(xn − x∗). Using (1.3), (1.4), (1.5) and (1.7) in turn,
we obtain

‖xn+1 − x∗‖ ≤ ‖A−1
n F ′(xn)‖

∫ 1

0
‖F ′(xn)−1F ′(x∗)‖

× ‖(F ′(x∗)−1(F ′(xn)− F ′(xθ)))‖‖xn − x∗‖dθ

+ ‖A−1
n (An − F ′(xn))‖‖xn − x∗‖

≤ a1

1− ∫ ρ(xn)
0 L0(u)du

∫ 1

0

∫ ρ(xn)

θρ(xn)
L(u)duρ(xn)dθ + a2ρ(xn)
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=
a1

∫ ρ(xn)
0 L(u)udu

1− ∫ ρ(xn)
0 L0(u)du

+ a2ρ(xn).

Taking n = 0 above, we obtain ‖x1 − x∗‖ ≤ q‖x0 − x∗‖ < ‖x0 − x∗‖,
i.e., x1 ∈ U(x∗, r). By mathematical induction, all xn belong to U(x∗, r)
and ρ(xn) = ‖xn − x∗‖ decreases monotonically. Therefore, for all n =
0, 1, · · · , we get

‖xn+1 − x∗‖ =
a1

∫ ρ(xn)
0 L(u)udu

ρ(xn)2(1− ∫ ρ(xn)
0 L0(u)du)

ρ(xn)2 + a2ρ(xn)

≤ a1

∫ ρ(x0)
0 L(u)udu

ρ(x0)2(1−
∫ ρ(x0)
0 L0(u)du)

ρ(xn)2 + a2ρ(xn),

which implies (2.2). The proof of the theorem is complete.
Next, we present the local convergence of (INLM) under the (C0)

conditions.

Theorem 2.2. Suppose the (C0) conditions and let r > 0 satisfy

(2.4)
a1

∫ r
0 L0(u)(2r − u)du

r(1− ∫ r
0 L0(u)du)

+ a2 ≤ 1.

Then (INLM) is convergent for all x0 ∈ U(x∗, r) and

‖xn+1 − x∗‖ ≤ a1

∫ ρ(xn)
0 L0(u)(2ρ(x0)− u)du

ρ(x0)(1−
∫ ρ(x0)
0 L0(u)du)

‖xn − x∗‖2

+a2‖xn − x∗‖, n = 0, 1, · · ·(2.5)

where

(2.6) q0 :=
a1

∫ ρ(x0)
0 L0(u)(2ρ(x0)− u)du

ρ(x0)(1−
∫ ρ(x0)
0 L0(u)du)

+ a2 < 1.

Proof. Arbitrarily choosing x0 ∈ U(x∗, r) where r satisfies (2.4), then
q0 determined by (2.6) is less than 1. in fact, from the monotonicity of
L and Lemma 1.1, we have

q0 =
a1

∫ ρ(x0)
0 L0(u)(2ρ(x0)− u)du

ρ(x0)2(1−
∫ ρ(x0)
0 L0(u)du)

ρ(x0) + a2

<
a1

∫ r
0 L0(u)(2r − u)du

r2(1− ∫ r
0 L0(u)du)

r + a2 ≤ 1.
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Now if xn ∈ U(x∗, r), we have by (INLM)

xn+1 − x∗ = xn − x∗ −A−1
n (F (xn)− F (x∗))

= xn − x∗ −
∫ 1

0
A−1

n F ′(xθ)dθ(xn − x∗)

= A−1
n F ′(xn)

∫ 1

0
F ′(xn)−1F ′(x∗)(F ′(x∗)−1

×(F ′(xn)− F ′(xθ)))(xn − x∗)dθ

+A−1
n (An − F ′(xn))(xn − x∗),

where xθ = x∗ + θ(xn − x∗). Using (1.4), (1.5) and (1.7) in turn, we
obtain

‖xn+1 − x∗‖ ≤ ‖A−1
n F ′(xn)‖

∫ 1

0
‖F ′(xn)−1F ′(x∗)‖

×‖F ′(x∗)−1(F ′(xn)− F ′(xθ))‖‖xn − x∗‖dθ

+‖A−1
n (An − F ′(xn))‖‖xn − x∗‖

≤ a1

1− ∫ ρ(xn)
0 L0(u)du

∫ 1

0
(
∫ ρ(xn)

0

+
∫ θρ(xn)

0
)L0(u)duρ(xn)dθ + a2ρ(xn)

=
a1

∫ ρ(xn)
0 L0(u)(2ρ(x) − u)du

1− ∫ ρ(xn)
0 L0(u)du

+ a2ρ(xn).

Taking n = 0 above, we obtain ‖x1 − x∗‖ ≤ q0‖x0 − x∗‖ < ‖x0 − x∗‖,
i.e., x1 ∈ U(x∗, r) this shows that (INLM) can be continued an infinite
number of times. By mathematical induction, all xn belong to U(x∗, r)
and ρ(xn) = ‖xn − x∗‖ decreases monotonically. Therefore, for all n =
0, 1, · · · , we have

‖xn+1 − x∗‖ =
a1

∫ ρ(xn)
0 L0(u)(2ρ(xn)− u)du

ρ(xn)2(1− ∫ ρ(xn)
0 L0(u)du)

ρ(xn)2 + a2ρ(xn)

≤ a1

∫ ρ(x0)
0 L0(u)(2ρ(x0)− u)du

ρ(x0)2(1−
∫ ρ(x0)
0 L0(u)du)

ρ(xn)2 + a2ρ(xn),

which implies (2.5). The proof of the theorem is complete.

Remark 2.3. If L0 = L, then the results obtained here are reduced
to the corresponding ones in [7]. Otherwise, i.e., if L0 < L, then our
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results constitute an improvement. Indeed, let us denote by q̄ and q̄0 the
quantities used in [7] and obtained from (2.3) and (2.6), respectively, if
we replace L0 by L. Then, we have that

q < q̄

and
q0 < q̄0.

Moreover, the radii of convergence obtained from (2.3) and (2.6) are
larger (see also next Section). It is worth noticing that in our Theo-
rem 2.2 we use (1.5), whereas in the corresponding Theorem 3.2 in [7]
lesaccurate, more expensive and more difficult to verify condition (1.3)
is used.

3. Special cases and applications

We specialize functions L0 and L in this Section. First, we consider
the classical case where

(3.1) L0(u) = L0 > 0, and L(u) = L > 0

are constant functions. Then, Theorem 2.1 and Theorem 2.2, reduce,
respectively to

Corollary 3.1. Suppose the (C) conditions and (3.1) hold and

(3.2) r =
2(1− a2)

La1 + 2L0(1− a2)
.

Then (INLM) is convergent for all x0 ∈ U(x∗, r),

(3.3) q =
a1L‖x0 − x∗‖

2(1− L0‖x0 − x∗‖) + a2 < 1

and the estimate (2.2) holds.

Corollary 3.2. Suppose the (C0) conditions and (3.1) hold and

(3.4) r =
2δ

(3 + 2δ)L0
,

where δ = 1−a2
a1

. Then (INLM) is convergent for all x0 ∈ U(x∗, r),

(3.5) q =
3a1L0‖x0 − x∗‖

2(1− L0‖x0 − x∗‖) + a2 < 1

and estimate (2.6) holds.
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Remark 3.3. If a1 = 1 and a2 = 0, then (INLM) specializes to the
Newton’s method and the radius r in (3.2) specializes to the convergence
redius given by Traub [16], [17] and Rheinboldt [15] if L0 = L,

rTR =
2

2L
.

However, our radius r∗ is larger if L0 < L, since

rTR < r∗ =
2

L + 2L0
.

Notice also that
rTR

r∗
→ 1

3
as

L0

L
→ 0.

Another popular choice for function L is given by [6], [7], [11], [17]

(3.6) L(u) =
2γ

(1− γu)3
for some γ > 0 and each u ∈ (0,

1
γ

).

In this case condition (1.3) is satisfied so that

‖F ′(x∗)−1(F ′(x)− F ′(xθ))‖ ≤ 1
(1− γ‖x− x∗‖)2 −

1
(1− θγ‖x− x∗‖)2

Moreover, condition (1.5) is also satisfied for L0 defined by

(3.7) L(u) =
2γ0

(1− γ0u)3
for some γ0 ∈ (0, γ] and each u ∈ (0,

1
γ0

)

so that

‖F ′(x∗)−1(F ′(x)− F ′(xθ))‖ ≤ 1
(1− γ0‖x− x∗‖)2 − 1.

As in Corollary 3.1 and Corollary 3.2 we can obtain the specialized
results for Theorem 2.1 and Theorem 2.2 where L and L0 are given
by (3.6) and (3.7), respectively. However, we leave the details to the
motivated reader. In the rest of this section we suppose that X and
Y are finite dimensional spaces of Rk (k a natural number). Next, we
improve the results in [8], [11] for the Newton-arithmetic mean (NAM)
for solving the system of equations

(3.8) F (x) = 0, F : U(x∗, r) ⊆ Rk → Rk.

E. Galligani considered the following two splittings of the matrix
F ′(x)

(3.9) F ′(x) = M1(x)−N1(x) = M2(x)−N2(x),

where the spectral radius ρ(M1(x)−1N1(x)) < 1, ρ(M1(x)−2N2(x)) < 1.
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Combining the splittings (3.9), (NAM) can be described as follows:

Choose the initial guess x0

For n = 0 step 1 until convergence d0

w(0)
n = 0

For j = 1, · · · , jn do

M1(xn)z1 = N1(xn)w(j−1)
n − F (xn)

M2(xn)z2 = N2(xn)w(j−1)
n − F (xn)

w(j)
n =

1
2
(z1 + z2)

Set xn+1 = xn + w(jn)
n .

Here {jn} denotes a sequence of positive integers.
In fact, at each outer iteration n, the (NAM) method generates the

vectors

w(1)
n = −M(xn)−1F (xn),

w(2)
n = −(H(xn) + I)M(xn)−1F (xn),

...

w(jn)
n = −(

jn−1∑

j=0

(H(xn))jM(xn)−1F (xn),

where

(3.10) M(x)−1 =
1
2
(M1(x)−1 + M2(x)−1),

(3.11) H(x) =
1
2
(M1(x)−1N1(x)+M2(x)−1N2(x)) = I−M(x)−1F ′(x).

If we set

(3.12) A(xn)−1 =
jn−1∑

j=0

(H(xn))jM(xn)−1,

then we have

(3.13) xn+1 = xn −A(xn)−1F (xn).

Thus, the (NAM) method can be regarded as a class Newton-like method
in which F ′(xn) has been replaced by the matrix A(xn) given by (3.12).
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We now assume that the matrices M1(xn),M2(xn),M(xn) are all
nonsingular and H(x) is convergent at xn ∈ D( i.e., the spectral radius
ρ(H(xn)) < 1). Thus from (3.12),

A(xn)−1 = (I − (H(xn))jn)(I −H(xn))−1M(xn)−1

= (I − (H(xn))jn)(M(xn)−1F ′(xn))−1M(xn)−1(3.14)

= (I − (H(xn))jn)F ′(xn)−1.

Using the above notation and Theorem 2.1 we present the local result
for (NAM).

Theorem 3.4. Suppose that the (C) conditions holds, M1(x),M2(x),
M(x),H(x) are invertible for all x ∈ U(x∗, r) and

(3.15) ‖I −H(x)‖ ≤ a1, ‖H(x)‖ ≤ a2 ≤ 1.

Let r > 0 satisfy

(3.16)
a1

∫ r
0 L(u)udu

r(1− ∫ r
0 L0(u)du)

+ a2 ≤ 1.

Then (NAM) is convergent for all x0 ∈ U(x∗, r) and

‖xn+1 − x∗‖ ≤ a1

∫ ρ(x0)
0 L(u)udu

ρ(x0)2(1− a2)(1−
∫ ρ(x0)
0 L0(u)du)

‖xn − x∗‖2

+a2‖xn − x∗‖, n = 0, 1, · · ·(3.17)

where

(3.18) q :=
a1

∫ ρ(x0)
0 L(u)udu

ρ(x0)(1− a2)(1−
∫ ρ(x0)
0 L0(u)du)

+ a2 < 1.

Proof. In fact, From (3.14) and (3.15), we have

‖A(xk)−1F ′(xk)− I‖ = ‖(H(xk))jk‖ ≤ ‖H(xk)‖jk ≤ a2,

‖A(xk)−1F ′(xk)‖ = ‖I − (H(xk))jk‖

≤ ‖I −H(xk)‖
jk−1∑

j=0

‖H(xk)‖j

≤ ‖I −H(xk)‖
1− ‖H(xk)‖ ≤

a1

1− a2
.

The results now follows from Theorem 2.1.
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Corollary 3.5. Suppose that the (C) conditions hold L0 and L
are constant functions, M1(x),M2(x),M(x), H(x) are invertible for all
x ∈ U(x∗, r) and (3.15) holds. Let

(3.19) r =
2(1− a2)2

La1 + 2L0(1− a2)2
> 0.

Then (NAM) is convergent for all x0 ∈ U(x∗, r) and for

(3.20) q =
a1L‖x0 − x∗‖

2(1− a2)(1− L0‖x0 − x∗‖) + a2 < 1.

the inequality (3.17) holds.

Remark 3.6. If L0 = L, Theorem 3.4 and Corollary 3.5 reduce to
the corresponding results in [7]. In particular if L0 and L are constant
functions our results present the corresponding ones [11] in affine invari-
ant form. The advantages of this approach have been explained in [9].
If L0 < L our results extend the convergence ball and improve the error
estimates on the distances ‖xn − x∗‖ for each n = 1, 2, · · · .
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